XENIUM IN SITU АНАЛІЗ КОРОНАРНИХ ВІДДІЛІВ ГОЛОВНОГО МОЗКУ НА МИШАЧІЙ МОДЕЛІ ХВОРОБИ АЛЬЦГЕЙМЕРА
Ключові слова:
Xenium, Alzheimer’s disease, Spatial AnalysisАнотація
The article describes the Xenium in situ analysis of coronal brain sections in a mouse model of Alzheimer's disease. The obtained results suggest that spatial transcriptomics is a highly effective method for identifying microregions of functional preservation and pathological sites in the brain in cases of neurodegenerative diseases.
Посилання
Breijyeh, Z., & Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020. Vol. 25. No 24, P. 5789. https://doi.org/10.3390/molecules25245789.
Xenium In Situ Analysis of Alzheimer’s Disease Mouse Model Brain Coronal Sections from One Hemisphere Over a Time Course, Xenium Onboard Analysis 1.4.0. 2023. Available at: https://www.10xgenomics.com/datasets/xenium-in-situ-analysis-of-alzheimers-disease-mouse-model-brain-coronal-sections-from-one-hemisphere-over-a-time-course-1-standard.
Moses, L., Einarsson, P.H., Jackson, K., Luebbert, L., Booeshaghi, S., Antonsson, S., Melsted, P., Pachter, L. «Voyager: exploratory single-cell genomics data analysis with geospatial statistics.» bioRxiv. 2023. https://doi.org/10.1101/2023.07.20.549945.
Satoh, J., Yamamoto, Y., Asahina, N., Kitano, S., & Kino, Y. RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for alzheimer's disease brains. Disease markers. 2014. Vol. 2014. No 1. P. 1–10. https://doi.org/10.1155/2014/123165
Karalay, O., Doberauer, K., Vadodaria, K., Knobloch, M., Berti, L., Miquelajauregui, A., et al. Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2011. Vol. 108. No 14. P. 5807–5812. https://doi.org/5807-12. 10.1073/pnas.1013456108.
Kong, W., Mou, X., Liu, Q., Chen, Z., Vanderburg, C. R., Rogers, J. T., & Huang, X. Independent component analysis of Alzheimer's DNA microarray gene expression data. Molecular neurodegeneration. 2009. Vol. 4. No 5. https://doi.org/10.1186/1750-1326-4-5.
Bueno, D., Dey, P. N., Schacht, T., Wolf, C., Wüllner, V., Morpurgo, E., et al. NECAB2 is an endosomal protein important for striatal function, Free Radical Biology and Medicine. 2023. Vol. 208. P. 643-656. https://doi.org/10.1016/j.freeradbiomed.2023.09.003.
Krokidis, M. G., Vrahatis, A. G., Lazaros, K., Skolariki, K., Exarchos, T. P., & Vlamos, P. Machine Learning Analysis of Alzheimer’s Disease Single-Cell RNA-Sequencing Data across Cortex and Hippocampus Regions. Current Issues in Molecular Biology. 2023. Vol. 45. No 11. P. 8652–8669. https://doi.org/10.3390/cimb45110544.
Khalaf, G., Mattern, C., Begou, M., Boespflug-Tanguy, O., Massaad, C., & Massaad-Massade, L. Mutation of Proteolipid Protein 1 Gene: From Severe Hypomyelinating Leukodystrophy to Inherited Spastic Paraplegia. Biomedicines. 2022. Vol. 10. No 7. P. 1709. https://doi.org/10.3390/biomedicines10071709.
Wan, L., Zhong, P., Li, P., Ren, Y., Wang, W., Yu, M., Feng, H. Y., & Yan, Z. CRISPR-based epigenetic editing of Gad1 improves synaptic inhibition and cognitive behavior in a Tauopathy mouse model. Neurobiology of disease. 2025. Vol. 206. No 1. P. 106826. https://doi.org/10.1016/j.nbd.2025.106826.
Foster, E. M., Dangla-Valls, A., Lovestone, S., Ribe, E. M., & Buckley, N. J. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Frontiers in neuroscience. 2019. Vol. 13. No 19. https://doi.org/10.3389/fnins.2019.00164.
Kyriatzis, G., Khrestchatisky, M., Ferhat, L., & Chatzaki, E. A. Neurotensin and Neurotensin Receptors in Stress-related Disorders: Pathophysiology & Novel Drug Targets. Current neuropharmacology. 2024. Vol. 22. No 5. P. 916–934. https://doi.org/10.2174/1570159X21666230803101629.
Isik, F. I., Katzeff, J. S., Fu, Y., & Kim, W. S. Understanding the Role of CDH4 in Multiple System Atrophy Brain. Journal of Parkinson's disease. 2023. Vol. 13. No 8. P. 1303–1311. https://doi.org/10.3233/JPD-230298.
Sims, R., Hollingworth, P., Moskvina, V., Dowzell, K., O’Donovan, M. C., et al. Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer’s disease. Neuroscience Letters. 2009. Vol. 461. No 1. P. 54–59. https://doi.org/10.1016/j.neulet.2009.05.051.
Bhattarai, P., Gunasekaran, T. I., Belloy, M. E., Reyes-Dumeyer, et al. Rare genetic variation in fibronectin 1 (FN1) protects against APOEε4 in Alzheimer's disease. Acta neuropathologica. 2024. Vol. 147. No 1. P. 70. https://doi.org/10.1007/s00401-024-02721-1.
Yuan H., Hansen K. B., Traynelis S. F. Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Molecular Pharmacology. 2015. Vol. 88, No 1, P. 203 – 217. https://doi.org/10.1124/mol.115.097998/
Hu, B., Duan, S., Wang, Z., Li, X., et al. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. Frontiers in aging neuroscience. 2021. Vol. 13. No 789834. https://doi.org/10.3389/fnagi.2021.789834.