БІОГЕННІ МАГНІТНІ НАНОЧАСТИНКИ У ПУХЛИННИХ КЛІТИНАХ РІЗНОГО ПОХОДЖЕННЯ ДЛЯ ТЕРАПЕВТИЧНОГО ВИКОРИСТАННЯ
Ключові слова:
magnetic nanoparticles, cancer, magnetization, remanenceАнотація
This study examines biogenic magnetic nanoparticles (BMNs) in various tumor types through magnetization measurements. Results show significant variation: meningiomas and glioblastomas often contain higher BMN levels than normal tissues, while carcinomas show reduced levels. These differences provide a basis for potential targeting strategies in cancer therapy.
Посилання
Chain‐Like structures of biogenic and nonbiogenic magnetic nanoparticles in vascular tissues / S. Gorobets et al. Bioelectromagnetics. 2022. Vol. 43, no. 2. P. 119–143. URL: https://doi.org/10.1002/bem.22390.
Magnetogenetics: remote activation of cellular functions triggered by magnetic switches / S. Del Sol-Fernández et al. Nanoscale. 2022. Vol. 14, no. 6. P. 2091–2118. URL: https://doi.org/10.1039/d1nr06303k.
Magnetogenetics as a promising tool for controlling cellular signaling pathways / A. A. Latypova et al. Journal of nanobiotechnology. 2024. Vol. 22, no. 1. URL: https://doi.org/10.1186/s12951-024-02616-z.
Functionalized magnetic nanoparticles for cancer therapy / M. Sabzini et al. Functionalized nanomaterials for cancer research. 2024. P. 435–457. URL: https://doi.org/10.1016/b978-0-443-15518-5.00025-2.
Biocompatible polymer functionalized magnetic nanoparticles for antimicrobial and anticancer activities / T. Munir et al. Materials chemistry and physics. 2023. Vol. 301. P. 127677. URL: https://doi.org/10.1016/j.matchemphys.2023.127677.
Characterization of iron compounds in tumour tissue from temporal lobe epilepsy patients using low temperature magnetic methods / F. Brem et al. BioMetals. 2005. Vol. 18, no. 2. P. 191–197. URL: https://doi.org/10.1007/s10534-004-6253-y.
Kirschvink J., Tabrah F., Batkin S. Ferromagnetism in two mouse tumours. Journal of experimental biology. 1982. Vol. 101, no. 1. P. 321–326. URL: https://doi.org/10.1242/jeb.101.1.321
Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles / Q. Li et al. Scientific reports. 2017. Vol. 7, no. 1. URL: https://doi.org/10.1038/s41598-017-09897-5.
High room temperature coercivity from α-Fe2O3 nanoparticles embedded in silica / C. J. Masina et al. Journal of magnetism and magnetic materials. 2024. Т. 610. С. 172521. URL: https://doi.org/10.1016/j.jmmm.2024.172521.
Magnetic iron compounds in the human brain: a comparison of tumour and hippocampal tissue / F. Brem et al. Journal of the royal society interface. 2006. Vol. 3, no. 11. P. 833–841. URL: https://doi.org/10.1098/rsif.2006.0133.
Anomalous magnetic properties of brain tissue at low temperature: The 50 K anomaly / A. M. Hirt et al. Journal of geophysical research: solid earth. 2006. Vol. 111, B12. URL: https://doi.org/10.1029/2006jb004570.
Kobayashi A., Yamamoto N., Kirschvink J. Studies of inorganic crystals in biological tissue: magnetic in human tumor. Journal of the japan society of powder and powder metallurgy. 1997. Vol. 44, no. 3. P. 294–300. URL: https://doi.org/10.2497/jjspm.44.294.
Grassi-Schultheiss P. P., Heller F., Dobson J. Analysis of magnetic material in the human heart, spleen and liver. Biometals. 1997. Vol. 10, no. 4. P. 351–355. URL: https://doi.org/10.1023/a:1018340920329.