ЦИТОТОКСИЧНІСТЬ ЛЕГОВАНИХ МЕТАЛАМИ КАЛЬЦІЙ ФОСФАТІВ АПАТИТОВОГО ТИПУ

Автор(и)

  • А. М. Котляр КПІ ім. Ігоря Сікорського, Україна
  • К. С. Онищенко КПІ ім. Ігоря Сікорського, Україна
  • Н. Ю. Струтинська Київський національний університет імені Тараса Шевченка, Україна

Ключові слова:

nanohydroxyapatite, cytotoxicity, metal ions, biocompatibility, biomedical materials

Анотація

The cytotoxic properties of nanohydroxyapatites are analyzed. Analysis of literature sources showed that the biocompatibility and cytotoxicity of metal-doped nanohydroxyapatites depend on the type of dopant ion, nanoparticle morphology, and material concentration. The relevance of these materials in biomedical applications is highlighted.

Посилання

New nanobioceramics based on hydroxyapatite for biomedical applications: stability and properties / C. S. Ciobanu et al. Nanomaterials. 2025. Vol. 15, no. 3. P. 224. URL: https://doi.org/10.3390/nano15030224.

Biomimetic approaches for bone tissue engineering / J. Ng et al. Tissue Engineering Part B: Reviews. 2017. Vol. 23, no. 5. P. 480–493. URL: https://doi.org/10.1089/ten.teb.2016.0289.

Fabrication of core–shell AgpDAHAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility / K. Chen et al. RSC Advances. 2017. Vol. 7, no. 47. P. 29368–29377. URL: https://doi.org/10.1039/c7ra03494f.

Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration via OPG/RANKL signaling pathway / X.-L. Liu et al. Journal of Nanobiotechnology. 2023. Vol. 21, no. 1. URL: https://doi.org/10.1186/s12951-023-01988-y.

In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration / V. R. Martinez-Zelaya et al. International Journal of Nanomedicine. 2019. Volume 14. P. 3471–3490. URL: https://doi.org/10.2147/ijn.s197157.

Scalable fabrication of freely shapable 3D hierarchical Cu-doped hydroxyapatite scaffolds via rapid gelation for enhanced bone repair / H. Yang et al. Materials Today Bio. 2024. Vol. 29. P. 101370. URL: https://doi.org/10.1016/j.mtbio.2024.101370.

Huang L.-H., Sun X.-Y., Ouyang J.-M. Shape-dependent toxicity and mineralization of hydroxyapatite nanoparticles in A7R5 aortic smooth muscle cells. Scientific Reports. 2019. Vol. 9, no. 1. URL: https://doi.org/10.1038/s41598-019-55428-9.

Nanohydroxyapatite exerts cytotoxic effects and prevents cellular proliferation and migration in glioma cells / R. M. Gorojod et al. Toxicological sciences. 2019. Vol. 169, no. 1. P. 34–42. URL: https://doi.org/10.1093/toxsci/kfz019.

Saroj S., Vijayalakshmi U. Structural, morphological and biological assessment of magnetic hydroxyapatite with superior hyperthermia potential for orthopedic applications. Scientific Reports. 2025. Vol. 15, no. 1. URL: https://doi.org/10.1038/s41598-025-87111-7.

Biological evaluation of hydroxyapatite zirconium nanoparticle as a potential radiosensitizer for lung cancer X-ray induced photodynamic therapy / A. Kurniawan et al. Applied Radiation and Isotopes. 2025. Vol. 217. P. 111615. URL: https://doi.org/10.1016/j.apradiso.2024.111615.

Investigation of cytotoxicity and antibacterial effect of boron-containing nano-hydroxyapatite / N. Aydın et al. Journal of Stomatology. 2024. URL: https://doi.org/10.5114/jos.2024.139890.

##submission.downloads##

Опубліковано

2025-05-16