ПОРІВНЯЛЬНИЙ АНАЛІЗ БАКТЕРІОФАГІВ РІЗНОГО СПЕКТРУ ДІЇ ЗА ЛІТИЧНОЮ АКТИВНІСТЮ ПРОТИ ШТАМІВ STAPHYLOCOCCUS AUREUS ЯК АЛЬТЕРНАТИВА АНТИБІОТИКОТЕРАПІЇ
Ключові слова:
bacteriophage, lytic activity, Staphylococcus aureus, MRSA, iMLSBАнотація
The global spread of multidrug-resistant Staphylococcus aureus, including methicillin-resistant strains (MRSA) and isolates with inducible macrolide-lincosamide-streptogramin B (iMLSB) resistance, poses a significant clinical and veterinary challenge. This study assessed the in vitro lytic efficacy of bacteriophages with varying host specificities against phenotypically diverse St. aureus strains.
Посилання
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis / C. J. Murray et al. The Lancet. 2022. Vol. 399, no. 10325. P. 629–655. URL: https://doi.org/10.1016/s0140-6736(21)02724-0.
Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050 / M. Naghavi et al. The Lancet. 2024. Vol. 404, no. 10549. P. 1119–1226. URL: https://doi.org/10.1016/s0140-6736(24)01867-1.
Global antimicrobial resistance and use surveillance system (GLASS) report: 2022. World Health Organization (WHO). URL: https://www.who.int/publications/i/item/9789240062702.
Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus / M. Monaco et al. Current Topics in Microbiology and Immunology. Cham, 2016. P. 21–56. URL: https://doi.org/10.1007/82_2016_3.
Antibiotic development – economic, regulatory and societal challenges / C. Årdal et al. Nature Reviews Microbiology. 2019. Vol. 18, no. 5. P. 267–274. URL: https://doi.org/10.1038/s41579-019-0293-3.
Food and agriculture organization of the united nations. drivers, dynamics and epidemiology of antimicrobial resistance in animal production. Food & Agriculture Organization of the United Nations, 2017. 68 с. URL: https://openknowledge.fao.org/items/58ede2fe-f837-4a9b-bcf9-8c4b3aba85c3.
Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence? / K. Hoelzer et al. BMC Veterinary Research. 2017. Vol. 13, no. 1. URL: https://doi.org/10.1186/s12917-017-1131-3.
Phage therapy: what have we learned? / A. Górski et al. Viruses. 2018. Vol. 10, no. 6. P. 288. URL: https://doi.org/10.3390/v10060288.
Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus / M. L. Ooi et al. JAMA Otolaryngology–Head & Neck Surgery. 2019. Vol. 145, vo. 8. P. 723. URL: https://doi.org/10.1001/jamaoto.2019.1191.
Antibacterial efficacy of two commercially available bacteriophage formulations, staphylococcal bacteriophage and pyo bacteriophage, against methicillin-resistant Staphylococcus aureus: prevention and eradication of biofilm formation and control of a systemic infection of Galleria mellonella Larvae / T. Tkhilaishvili et al. Frontiers in Microbiology. 2020. Vol. 11. URL: https://doi.org/10.3389/fmicb.2020.00110.
Bacteriophage therapy and current delivery strategies for orthopedic infections: A SCOPING review / J. Young та ін. Journal of Infection. 2024. Vol. 88, no. 3. P. 106125. URL: https://doi.org/10.1016/j.jinf.2024.106125.
Khan Mirzaei M., Nilsson A. S. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLOS ONE. 2015. Vol. 10, no. 3. P. e0118557. URL: https://doi.org/10.1371/journal.pone.0118557.
Наказ МОЗ України Nº167 від 05.04.2007. Методичні вказівки «Визначення чутливості мікроорганізмів до антибактеріальних препаратів».
Inducible clindamycin resistance in Staphylococcus aureus: Reason for treatment failure. Journal of International Medicine and Dentistry. 2015. Vol. 2, no. 2. P. 97–103. URL: https://doi.org/10.18320/jimd/201502.0297.