ПЕРСПЕКТИВИ ВИКОРИСТАННЯ БІОПАЛИВНИХ ЕЛЕМЕНТІВ В ЕКОБІОТЕХНОЛОГІЇ
Ключові слова:
biofuel cells, electricity, ecobiotechnology, plant, wastewaterАнотація
The deterioration of the environment, which is becoming more acute every year, poses a number of urgent tasks for scientists. Biofuel cells as bioelectrochemical systems in which current is generated by bioconversion of waste are promising in ecobiotechnology. Microbial fuel cells, microbial electrolysis cells, plant biofuel cells and a number of others are promising for solving the problems of waste disposal and electricity generation.
Посилання
Щурська К., Зубченко Л., Кузьмінський Є. Дослідження впливу умов культивування екзоелектрогенів на біоелектрохімічний процес виділення водню. Наукові вісті НТУУ "КПІ". 2012. No 3. С. 88–92.
Кузьмінський Є. В. Паливні елементи. I. Сучасний стан розроблення /Є. В. Кузьмінський, К. О. Щурська, І. А. Самаруха // Відновлювана енергетика.- 2013. - No 1. - С. 90-96. - Режим доступу:http://nbuv.gov.ua/UJRN/vien_2013_1_18
Koltysheva D., Shchurska K., Kuzminskyi Y. PROMISING AREAS OF BIOFUEL CELL USE. Biotechnologia Acta. 2020. Vol. 13, no. 4. P. 5–13. URL: https://doi.org/10.15407/biotech13.04.005
Shchurska K, Zubchenko L, Sobczuk H, Kuzminskyy Y. High exoelectrogenic biofilms formation in microbial fuel cells. Innovative Biosystems and Bioengineering. 2019;3(4):246–252. DOI: http://dx.doi.org/10.20535/ibb.2019.3.4.185159
Liu H., Hu H. Microbial Electrolysis: Novel Biotechnology for Hydrogen Production from Biomass. Microbial Technologies in Advanced Biofuels Production. Boston, MA, 2011. P. 93–105. URL: https://doi.org/10.1007/978-1-4614-1208-3_6
Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis / N. Wrana et al. Journal of Cleaner Production. 2010. Vol. 18. P. S105–S111. URL: https://doi.org/10.1016/j.jclepro.2010.06.018
Biofilm Biology and Engineering of Geobacter and Shewanella spp. for Energy Applications / Y. Hu et al. Frontiers in Bioengineering and Biotechnology. 2021. Vol. 9. URL: https://doi.org/10.3389/fbioe.2021.786416
Kakarla R, Min B. Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int J Hydrogen Energy. 2014;39(19):10275–83. DOI: http://dx.doi.org/10.1016/j.ijhydene.2014.04.158
Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells / [M. Christwardana, D. Frattini, K. D. Duarte та ін.]. // Applied energy. – 2019. – №238. – С. 239–248.
Quorum sensing autoinducers enhance biofilm formation and power production in a hypersaline microbial fuel cell / O.Monzon, Y. Yang, Q. Li, P. J. Alvarez. // Biochemical Engineering Journal. – 2016. – №109. – С. 222–227.
Bacterial signals N-acyl homoserine lactones induce the changes of morphology and ethanol tolerance in Saccharomyces cerevisiae [Електронний ресурс] / [G. Ren, A. Ma, W. Liu та ін.] // AMB Express. – 2016. – Режим доступу до ресурсу: https://link.springer.com/article/10.1186/s13568-016-0292-y.
Li Y. H. Quorum sensing and bacterial social interactions in biofilms [Електронний ресурс] / Y. H. Li, X. Tian // Sensors. – 2012. – Режим доступу до ресурсу: https://www.mdpi.com/1424-8220/12/3/2519.
Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability / S. G. A. Flimban et al. Energies. 2019. Vol. 12, no. 17. P. 3390. URL: https://doi.org/10.3390/en12173390
Bhaumik A. From AI to robotics: mobile, social, and sentient robots. Boca Raton: CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an informa business. 2018, 403 p.
Rusyn I., Gómora-Hernández J. C. Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy. Biotechnology Advances. 2024. Vol. 77. P. 108468. URL: https://doi.org/10.1016/j.biotechadv.2024.108468
Rusyn I., Medvediev O. Stacking and design optimization of novel plant microbial fuel cell based on dwarf indoor decorative and culinary plants as a compact biobattery for a low energy consumption devices. Bioresource Technology Reports. 2024. Vol. 26. P. 101860. URL: https://doi.org/10.1016/j.biteb.2024.101860
Vogl A. Untersuchungen zur mikrobiellen Brennstoffzelle zur energetischen Nutzung hochkonzentrierter Abwässer. 2016 Oct 16 [cited 2020 Jun 12]; Available from: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/5016.
Очищення стічних вод солодового заводу з одержанням біоводню/ М. Ю. Козар et al. Eastern-European Journal of Enterprise Technologies. 2013. Vol. 6, no. 10(66). P. 33. URL: https://doi.org/10.15587/1729-4061.2013.19141
Liu H., Hu H. Microbial Electrolysis: Novel Biotechnology for Hydrogen Production from Biomass. Microbial Technologies in Advanced Biofuels Production. Boston, MA, 2011. P. 93–105. URL: https://doi.org/10.1007/978-1-4614-1208-3_6
Biorefinery perspectives of microbial electrolysis cells (MECs) for hydrogen and valuable chemicals production through wastewater treatment / A. Kadier et al. Biofuel Research Journal. 2020. Vol. 7, no. 1. P. 1128–1142. URL: https://doi.org/10.18331/brj2020.7.1.5
Зубченко Л.С. Моделювання процесу формування біоплівки електрохімічно-активних мікроорганізмів в фотобіоелектрохімічній системі /Л. С. Зубченко, Є. В. Кузьмінський. Вісник Хмельницького національного університету. Технічні науки. – 2018. – Вип. 2. – С. 51 – 59.
Saratale RG, Kuppam C, Mudhoo A, Saratale GD, Periyasamy S, Zhen G, et al. Bioelectrochemical systems using microalgae – A concise research update. Chemosphere. 2017;177:35–43. DOI: http://dx.doi.org/10.1016/j.chemosphere.2017.02.132
Enamala MK, Dixit R, Tangellapally A, Singh M, Dinakarrao SMP, Chavali M, et al. Photosynthetic microorganisms (Algae) mediated bioelectricity generation in microbial fuel cell: Concise review. Environ Technol Innov. 2020;19(100959):100959. DOI: http://dx.doi.org/10.1016/j.eti.2020.100959
Bazdar E, Roshandel R, Yaghmaei S, Mardanpour MM. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresour Technol. 2018;261:350–60. DOI: http://dx.doi.org/10.1016/j.biortech.2018.04.026
Reddy C. N., Nguyen H. T., Noori M. T., Min B. (2019) Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: Current status and future perspectives. Bioresource technology 292:122010.
Mohan S. V., Srikanth S., Chiranjeevi P., Arora S., Chandra, R. (2014) Algal biocathode for in situ terminal electron acceptor (TEA) production: Synergetic association of bacteria–microalgae metabolism for the functioning of biofuel cell. Bioresource technology 166:566-574.
Kokabian B., Gude V. G. (2015) Sustainable photosynthetic biocathode in microbial desalination cells. Chemical Engineering Journal 262:958-965.
Wu X. Y., Song T. S., Zhu X. J., Wei P., Zhou C. C. (2013) Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation. Applied biochemistry and biotechnology 171(8):2082-2092
Ling J., Xu Y., Lu C., Lai W., Xie G., Zheng L., Li G. (2019) Enhancing Stability of Microalgae Biocathode by a Partially Submerged Carbon Cloth Electrode for Bioenergy Production from Wastewater. Energies 12(17):3229.
González del Campo A., Cañizares P., Rodrigo M. A., Fernández F. J., Lobato J. (2013). Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. Journal of Power Sources 242:638-645.