• A. Kozlovska Lviv Polytechnic National University, Ukraine
  • R. Konechna Lviv Polytechnic National University, Ukraine


The latest development in nanoscale engineering drastically increased the diversity of methods in medical diagnosis and treatment. The major role in the implementation of recent innovations belongs to viruses. These supermolecular structures possess unique properties, such as high stability, susceptibility to surface engineering of their capsids, innate biocompatibility, and an enormous range of shapes and sizes, which allow them to perform more precise and diverse functions than synthetically programmed nanomaterials.


F. C. Geiger, F. J. Eber, S. Eiben, A. Mueller, H. Jeske, J. P. Spatz and C. Wege, Nanoscale, 2013, 5, 3808-3816.

R. A. Miller, A. D. Presley and M. B. Francis, J. Am. Chem. Soc., 2007, 129, 3104-3109. D. S. Peabody, J. Nanobiotechnology, 2003, 1, 5.

Q. Wang, T. Lin, J. E. Johnson and M. G. Finn, Chem. Biol., 2002, 9, 813-819.

Liu, C.; Chung, S.-H.; Jin, Q.; Sutton, A.; Yan, F.; Hoffmann, A.; Kay, B.K.; Bader, S.D.; Makowski, L.; Chen, L. Magnetic viruses via nano-capsid templates. J. Magn. Magn. Mater. 2006, 302, 47–51.

Frenkel, D.; Solomon, B. Filamentous phage as vector-mediated antibody delivery to the brain. Proc. Natl. Acad. Sci. USA 2002, 99, 5675–5679.

Yacoby, I.; Shamis, M.; Bar, H.; Shabat, D.; Benhar, I. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages. Antimicrob. Agents Chemother. 2006, 50, 2087–2097.

Oh, M.H.; Yu, J.H.; Kim, I.; Nam, Y.S. Genetically Programmed Clusters of Gold Nanoparticles for Cancer Cell-Targeted Photothermal Therapy. ACS Appl. Mater. Interfaces 2015, 7, 22578–22586.

Maurer P, Jennings GT, Willers J, Rohner F, Lindman Y, et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. Eur J Immunol. 2005; 35:2031–40.

Cornuz J, Zwahlen S, Jungi WF, Osterwalder J, Klingler K, et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLOS ONE. 2008; 3:e2547.

Shen L, Zhou J, Wang Y, et al. Efficient encapsulation of Fe3O4 nanoparticles into genetically engineered hepatitis B core virus-like particles through a specific interaction for potential bioapplications. Small. 2015;11(9-10):1190–1196.

Aljabali AAA, Sainsbury F, Lomonossoff GP, Evans DJ. Cowpea mosaic virus unmodified empty viruslike particles loaded with metal and metal oxide. Small. 2010;6(7):818–821.

Prel A, Caval V, Gayon R, et al. Highly efficient in vitro and in vivo delivery of functional RNAs using new versatile MS2-chimeric retrovirus-like particles. Mol Ther Methods Clin Dev. 2015;2:1503.

Ashley CE, Carnes EC, Phillips GK, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011;5(7):5729–5745.

Storni T, Ruedl C, Schwarz K, Schwendener RA, Renner WA, Bachmann MF. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T-cell responses in the absence of systemic side effects. J Immunol. 2004;172(3):1777–1785.

Qazi S, Miettinen HM, Wilkinson RA, McCoy K, Douglas T, Wiedenheft B. Programmed self-assembly of an active P22-Cas9 nanocarrier system. Mol Pharm. 2016;13(3):1191–1196.