ОТРИМАННЯ ЕЛЕКТРИЧНОГО СТРУМУ В ПОВНИХ МІКРОБНИХ ПАЛИВНИХ ЕЛЕМЕНТАХ ПРИ СОНЯЧНОМУ ОСВІТЛЕННІ Колтишева Д.С., Щурська К.О., Кузьмінський Є.В. КПІ ім. Ігоря Сікорського, dinakoltisheva@gmail.com

Вступ. Повні мікробні паливні елементи (МПЕ) з мікроводоростями – технологія, яка дає змогу одночасно очищувати стічні води та генерувати електричну енергію [1]. Серед основних компонентів повного МПЕ є біокатод та біоанод. Мікроорганізми на біоаноді розкладають органічні речовини з вивільненням електронів і протонів. Електрони через зовнішній ланцюг, а протони через мембрану прямують до біокатода, де поєднуються 3 фотосинтетично утвореним мікроводоростями киснем, продукуючи воду. Попередні дослідження [1-3] культивування мікроводоростей в МПЕ проводили із застосуванням штучних джерел освітлення, однак таке технологічне рішення зменшує кінцевий вихід електричної енергії, оскільки передбачає її використання для освітлення, тому актуальним є визначення можливості застосування сонячного освітлення для функціонування повного МПЕ.

Метою нашої роботи було встановлення біоелектрохімічних параметрів МПЕ за використання сонячного освітлення.

Матеріали та методи. Для досліду використовували двокамерний (об'єм кожної камери – 1 дм³) МПЕ Н-типу з попередньо нарощеною (за умов прикладення зовнішньої напруги 3 В) екзоелектрогенною біоплівкою. Під час досліду з мікроводоростями зовнішню напругу не застосовували. Аноліт містив фосфатно-сольовий буфер (PBS) 50 мМ (pH 6,1) ацетат натрію (1 г/дм³), FeCl₃ (200 мкМ) [4] та 10 мл розчину вітамінів і мінералів [5]. Як інокулят в анодній камері використовували ферментований залишок після метаногенезу. Католіт містив середовище Тамія та культури мікроводоростей: 1 – *Chlorella vulgaris*, 2 – *Desmodesmus armatus*. Електроди: каркас – сітка із неіржавіючої сталі, обмотана вуглецевою ниткою. Видима площа поверхні електродів 0,01м². Електроди перед запуском промивали 1N HCl та 1N NaOH та залишали в дистильованій воді на 24 год. Тривалість світлового дня протягом проведеного дослідження 9,5±1,25 годин. Вимірювання напруги та струму проводили мультиметром (UT131C), оптичну густину католіту визначали на спектрофотометрі (ULAB 102) за довжини хвилі 680 нм, яка відповідає піку поглинання хлорофілу *a* [2].

Результати та обговорення. Протягом культивування МПЕ спостерігали поступове збільшення оптичної густини католіту у всіх МПЕ, при цьому напруга зростала з 680 ± 34 мВ до 820 ± 41 мВ в МПЕ з *Chlorella vulgaris* та з 695 ± 35 мВ до 858 ± 43 мВ в МПЕ з *Desmodesmus armatus* (рис.1). Однак, в МПЕ з *Chlorella vulgaris* відбувалося незначне зниження напруги до 780 ± 39 мВ, що знаходиться в межах похибки. Струм в обох МПЕ коливався від 80 ± 4 мкА до 100 ± 5 мкА.

Такі результати демонструють можливість застосування сонячного освітлення для виробництва електрики у повному МПЕ з одночасним нарощенням біомаси мікроводоростей у катодній камері. Нарощена біомаса може слугувати джерелом ліпідів для біодизеля. Li та ін. [3] було показано, що вміст ліпідів у мікроводоростях, вирощених у повному МПЕ, становить 19,7%, що на

4% нижче за вміст ліпідів, вирощених у барботажному фотобіореакторі. Крім того, нарощена біомаса мікроводоростей може слугувати джерелом сполук з доданою вартістю, таких як лютеїн, віолаксантин, астаксантин [6].

Рис. 1. Зміна напруги (U), струму (I) та оптичної густини (OD) протягом культивування МПЕ за використанням сонячного освітлення

Висновки. Збільшення біомаси мікроводоростей з одночасним зростанням напруги протягом культивування на 20% в МПЕ з *Chlorella vulgaris* та на 23,5% в МПЕ з *Desmodesmus armatus* за використання сонячного освітлення дає змогу знизити витрати на штучне освітлення у разі використання повних МПЕ з мікроводоростями. Нарощена біомаса мікроводоростей може бути використана як сировина у виробництві біодизелю, а також для отримання сполук з доданою вартістю, таких як лютеїн, віолаксантин, астаксантин.

Список використаної літератури:

1. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell / E. Bazdar et al. *Bioresource Technology*. 2018. Vol. 261. P. 350–360. URL: <u>https://doi.org/10.1016/j.biortech.2018.04.026</u>

2. Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production / M. Christwardana et al. *Biomass and Bioenergy*. 2020. Vol. 139. P. 105617. URL: https://doi.org/10.1016/j.biombioe.2020.105617

3. Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell / M. Li et al. *Bioresource Technology*. 2019. Vol. 280. P. 95–103. URL: https://doi.org/10.1016/j.biortech.2019.02.038

4. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells / Q. Liu et al. *Science of The Total Environment*. 2018. Vol. 631-632. P. 695–701. URL: <u>https://doi.org/10.1016/j.scitotenv.2018.03.008</u>

5. Koltysheva D., Shchurska K., Kuzminskyi Y. Anode Biofilm Formation With Applied External Voltage. *Innov Biosyst Bioeng.* 2023. Vol. 7 No. 1. P. 14-23. <u>https://doi.org/10.20535/ibb.2023.7.1.273816</u>

6. Koltysheva D., Shchurska K., Kuzminskyi Y. Microalgae and cyanobacteria as biological agents of biocathodes in biofuel cells. *BioTechnologia*. 2021. Vol. 102, no. 4. P. 437–444. URL: <u>https://doi.org/10.5114/bta.2021.111108</u>